

Faculty of Engineering & Technology

Modeling and Simulation

Information:

Course Code: MAN 380 Level: Undergraduate Course Hours: 2.00- Hours

Department : Department of Mechanical Engineering

Instructor Information:						
Title	Name	Office hours				
Professor	Hassan Ahmed Ahmed Mohamed Metered	2				
Professor	Hassan Ahmed Ahmed Mohamed Metered	2				
Assistant Lecturer	Rana Mohamed Abdel Rahman Saleh	4				
Assistant Lecturer	Rana Mohamed Abdel Rahman Saleh	4				

Area Of Study:

The overall aims of this course are:

Description:

Mathematical models for mechanical, pneumatic, electrical, hydraulic, and mechatronic systems in the time domain for single and multivariable systems; Laplace and state space formulation Continuous, discrete, and combined system models;

Hardware-in-the-loop simulation and rapid prototyping of real-time electromechanical systems; Mat Lab, SimMechanics, Simulink, etc. are used to build models and virtual prototypes.

Course outcomes:

a. Knowledge and Understanding: :

- 1 Describe time response of first and second order differential equations.
- 2 Identify the type of physical system; mechanical, electrical, hydraulic, pneumatic, electric and electronic.
- 3 Identify different types of control systems.

b.Intellectual Skills::

- 1 Solve the differential equations of physical systems.
- 2 Transform differential equations to transfer function.
- 3 Apply Laplace transformation to change functions from time domain to s-domain and vice versa.
- 4 Deduce the differential equations of physical systems.

[&]quot;Ænrich the students' basic theoretical knowledge about the modeling of physical systems and their governing differential equations.

[&]quot;Ænrich the students' basic knowledge of dynamics response of physical systems.

[&]quot;Ænrich the students' basic knowledge of Matlab toolbox of modeling and identifications."

c.Professional and Practical Skills: :

- 1 Solve first and second order transfer functions using SIMULINK.
- 2 Use of MATLAB software to get inverse Laplace transform for certain transfer function.

d.General and Transferable Skills::

- 1 Work coherently and successfully as a part of a team in assignments.
- 2 Write reports in accordance with the standard scientific guidelines.

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Introduction to control systems	1	1	
Classification of physical systems	2	2	
Modeling of mechanical systems: linear and rotational	6	4	2
Modeling of hydraulic systems	6	4	2
Modeling of pneumatic systems	3	2	1
Modeling of electrical systems	2	4	2
Modeling of electronic systems: Operational amplifiers	5	3	2
Laplace Transform : definition, transformation of various functions from time domain to s-domain	5	4	1
Inverse Laplace Transform and partial fraction method. The use of MATLAB software.	8	4	4
Solution of first and second order differential equations using Laplace transform and transfer function approach. Use of SIMULINK software		2	1

Teaching And Learning Methodologies:

Interactive Lecturing

Problem solving

Experiential learning

Course Assessment:						
Methods of assessment	Relative weight %	Week No	Assess What			
1st Midterm	20.00					
2nd Midterm	20.00					
Assignments, Participation	10.00					
Final Exam	40.00	16				
Quizzes	10.00					

Course Notes:

Lecture notes Handouts.

I	R	ec	ΛI	mn	nei	ոժ	ed	h	nol	KS	
ı		こし	vi		ICI	ıu	cu	v	<i>-</i>		

Bolton, W; Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering Éxpearson; 6 edition, 2016.